Crowd Counting using Multi-Column CNN

Author
Vishnu Bangalore Thirumalesha - 1001829079
FNU Mamta - 1001759457
Shubham Patil - 1001860674

1 Abstract

The goal of the project is to implement a Multi-Column Convolutional Neural Network proposed in
Single-Image Crowd Counting via Multi-Column Convolutional Neural Network by Zhang et. al.
The paper also proposes a dataset named as Shanghaitech dataset which is used to train the model
and generate a Crowd Density Map. Further we aim to test this model on a dataset based on bacteria.

2 Introduction

The aim is to create a method for estimating the crowd count from a single image with random crowd
density and random perspective of an image. Method used is the Multi-column Convolutional Neural
Network (MCNN) architecture to map the image to its crowd density map to achieve the goal. The
proposed MCNN allows us to use any size or resolution of the input image. The features learned by
each column CNN are sensitive to variations in people/head size due to perspective effect or image
resolution by using filters with receptive fields of different sizes.

3 Method

3.1 Dataset Generation

The project is done on the Shanghaitech dataset which has been developed by the authors of our
chosen paper. It consists of 1198 annotated images for 330,165 peoples.

It divides in two parts: Part A - 482 images crawled from the internet

Part B - 716 images taken from the streets of Shanghai

Both parts further divided into Train data containing ground-truth in .mat files and crowd images in
.jpg format. Test data containing ground-truth in .mat files and crowd images in .jpg format. Once
the dataset is collected and we loaded it to the program, we have made few modifications to the dataset.

3.2 Data Preprocessing

The most prominent step while building any machine learning model is data pre-processing as it
will directly affect the result of our model. The more we pre-process the data, the more accurate the
model performs. To estimate number of people in a given image using CNN the output of the density
map (gives approx. of how many people in a square meter or pixel) is used instead of total number
of people count in a given image, reason being that the density map preserves more information
about an image compared to total number of people in the image due to occlusion and perspective
issue. Ground truth data is in .mat format. It has many different information as object format. We
segregated the required data and passed it to a Gaussian density filter for returning density of the
image and saved it as .npy format in drive for ease of loading it next time.

The ground truth value for an image in .mat looks as below:

The ground truth value for an image in .mat looks as below:

[[array([[(array([[7.148350e3, 9
[54.11038961, 956.96753247
.603B8961 , 970.6B18181E

0.240259747,

-l
et e (T2
-

—
(R}
[e

[337.35853659, 004.12926829],

[591.17317073, 575.08512193],

[498.4512195]1, 5E6.64634146]]), array([[973]], dtype=uintle)})]],
dtype=[('location', '0"'}, ('number', 'C"}])}11]

Figure 1: Ground truth .mat file

The density value of an image in .npy looks as below:

[[0.0000000e+00 0.0000000e+00 0.0000000e+00 ... 0.0000000e+00
0.0000000e+00 0.0000000e+00]

[0.0000000e+00 0.0000000e+00 0.0000000e+00 ... 0.0000000e+00
0.0000000e+00 0.0000000e+00]

[0.0000000e+00 0.0000000e+00 0.0000000e+00 ... 0.0000000e+00
0.0000000e+00 0.0000000e+00]

[4.4008222e-05 4.4843775e-05 4.5484467e-02 ... 7.63897377e-08
7.0627983e-09 6.5036510e-09]

[3.96217%98e-05 4.02081667e-02 4.0867322e-035 6.0224715e-08
6.106367%-08 5.622938%4e-09]

[3.5208070e-05 3.6108393e-02 3.6624278e-02 ... 0.0000000e+00
0.0000000e+00 0.0000000e+00]]

Figure 2: Ground truth .mat file to numpy

Based on the density generated and image available, the actual images and ground truth values made
as numpy are loaded and converted with a down sample value as 4 (down sample value of 1 will
return the size same as the actual image) to tensors. These tensors are retuned to form a dataset which
will be used for model training.

3.3 MODEL

The aim of this paper is to estimate accurate crowd count from an arbitrary still image, with an
arbitrary camera perspective and crowd density. The existing challenges were, the density and the
distribution of the crowd vary significantly from image to image and there are tremendous occlusions
for most people in each image, hence traditional detection-based methods do not work well on such
images and situations. The other challenge faced by the writer of the paper was due to significant

variation in the scale of the people in the images, they needed to utilize features at different scales to
accurately estimate crowd counts for different images which was a difficult task to achieve.

To overcome all the above mentioned challenges, the professors of Shanghai Tech university have
designed a multi-column convolutional neural network (MCNN) for counting the crowd in an
arbitrary still image. The idea of this model is inspired by the mutli-column deep neural network for
image classification where the final predictions are obtained by averaging the individual predictions
of all deep neural networks.

3.3.1 MCNN

The model used in this paper consists of three columns of convolutional neural networks where each
cnn has filters with different sizes. Input to the MCNN is the image and output of the MCNN is a
crowd density map. Finally the crowd count is calculated by taking the integral of the density map.
The three columns correspond to filters with receptive fields of different sizes i.e. large, medium and
small so that the features learned by each column CNN is adaptive to large variation in people’s head
size across different image resolutions. The professors have replaced the fully connected layer with
a convolutional layer with filter size of 1 x 1. Therefore the input image of the MCNN can be of
arbitrary size to avoid distortion. The output of the network is an estimate of the density of the crowd
whose integral will derive the crowd count.

Density map preserves more information related to distribution of people in an image than the total
number of crowds. Density map gives the spatial distribution of the given image. Such distribution
information is useful in many applications, for example, if the density in a small region is much
higher than that in other regions, it may indicate something abnormal happens there. Also in learning
the density map via CNN, the learned filters of different sizes are more adapted to heads of different
sizes, hence more suitable for arbitrary inputs whose perspective effect varies significantly, thus
improves the accuracy of crowd count.

16 3

Pooling: 2x2
Conv: 7x7

Conv: 7x7

Pooling: 2x2
Conv: 5x5

10 3
Conv: 55§ @ — @C—MV: 1x
Merged
24 12 /
Pooling: 2x2 Conv: ¥3

Conv: 5x5

Density

feature maps
map
Conv: 3x3

Conv: 3x3

Figure 3: The structure of the multi-column convolutional neural network for crowd density map
estimation

It has three parallel CNNs with filters that have different sized local receptive fields. They used the
same network architectures for all columns to simplify things (i.e., conv—pooling—conv—pooling).
The sizes and numbers of filters for each of these three CNNs, however, differ. Then, for each of the
2x2 regions, Max pooling is used. Rectified linear unit-Relu is the activation function used, and it
was chosen because it performs well for cnn. They used less filters for CNNs with larger filters to
minimize computational complexity (the number of parameters to be optimized). All of the CNNs’
performance function maps are stacked and converted to a density map. Filters of 1 x 1 sizes are used
to map the features maps to the density map. The difference between the projected density map and
the ground truth is then measured using Euclidean distance.

3.3.2 Milestone 2 results and challenges

31776378 min mae:227.49718965802873 min cgbch:ﬁ

epoch:23 error:)3

epoch:24 error 05904279436 min_mae:183.20705904279436 min_epoch:24
epoch:25 error: 1969314407 min mae:183.20705904279436 min_epoch:24
epoch:26 error: 56065727485 min_mae:183.20705904279436 min_epoch:24
epoch:27 error: 433371743 nin_mae:183.20705904279436 min_epo ;
epoch: 28 error: 4166041783 min_mae:1863.20705204279436 min_ep
epoch:29 error: 4612242311 min mae:183.20705904279436 min_epo
epoch:30 error:612.6431338970477 min mae:183.20705904279436 min_epoch:24
epech:3l error:223.87036971207505 min_mae:183. 2u‘359344 9436 min_epoch:24
epoch:32 error:550.3810283115932 min mae:183.20705904279436 min_epoch:24
epech:33 error:779.9741389515635 min mae:183. 97""59042"Q¢36 min_epoch:24
epoch:34 error:223.7785224242158 min mae:183.20705904279436 min_epoch:24
epoch:35 error:333.015282327 24 min mae:183.20705904279436 min_epoch:24

epoch:36 error:210.52175646436083 min mae:183.20705204279436 min_epoch:24
epoch:37 error:514.9711851182875 min_mae:183.20705904279436 min_epoch:24
epoch:38 error:376.2640893118722 min mae:183.20705904279436 min_epoch:24
or:293.40539425022 min mae:183.20705904279436 min_epoch: 24
737.0732789930406 min mae:183.20705904279436 min_epoch:24

epoch:39 err
epoch:40 error:73
epoch:4]l error: .8leB845610

8 57 min mae:183.20705904279436 min_epoch:24
3.02174465472882 min mae:183.20705904279436 min_epoch:24
16.6349828531454 min mae:183.20705904279436 min_epoch:2

epoch:42 e 3
4
43.7014013856322 min mae:183.20705904279436 min_epo
0

epcch:43 e

or:
or:

epoch:44 error:
epoch:45 error:
epoch:46 error:
epoch:47 error:

.871023785937 min_mae:183.20705804279436 min_epoch:24

.9470974220025 min mae:183.20705904279436 min_epoch:24
.81200636167422 min_mae:183.20705904279436 min_epoch:24
.70523850996415 min mae:183.20705904279436 min_epoch:24
3798462585 mxn:pa;..E3.2u?ﬂ533427@&3n mxn:?pnch:24

epoch:48 error:
epoch:49 error:
2021.04.20 22:2

Figure 4: Current model results with loss

Currently we have implemented the model proposed by the paper mentioned above. After running it
for 50 epochs, above are the results displaying the mean absolute error value for each epoch.
Below is the image and the density map generated by our model. Since the error rate is high, the
density map generated by the model does not accurately depict the actual density ground truth.

100

150

200

250

300

0 100 200 300 400

Figure 5: Actual single channel image

0 20 40 60 80 100 120

Figure 6: Generated estimate for the actual image

Challenges faced

Reading the mat files and feeding it to the model

Merging the model output into one to generate the estimated density map
Higher error rate

MILESTONE 3 IMPLEMENTATION

To understand the behavior of the model for different sets of training data, we have trained the
model on three different sets of training data. Hence based on the result we will be able to do an
approximate estimate of the number of people in a given image.

Part 1: Training the model on Part A of the Shanghaitech dataset

As mentioned above the part A consists of images which are sorted for densely populated images.
The model was trained for 2002 epochs with the min epoch at 1789th epoch giving a mean absolute
error (mae) of 123 which is close to what was achieved in the paper i.e. mean absolute error of 110.
The experiments show that the model is able to recognize the dense regions but is not accurately able
to find the sparse region of people’s headcount.

(103, 192)
0

20

100

0 25 50 75 100 125 150 175

Figure 7: Actual image and estimation from part A training data

Figure 8: Error for part A training data

Part 2: Training the model on Part B of the Shanghaitech dataset
Similarly Part B, consists of images of sparsely populated crowds from streets of Shanghai. So
training on the model, the predicted images is better able to predict the sparse crowds but performs
less accurately predicting the dense regions of an image. This model was trained for 120 epochs,
with the min epoch at 100th epoch with the mean absolute error at 28.

350

100 H
0 5 50 75 100 125 150 175

Figure 9: Actual image and estimation from part B training data

Figure 10: Error for part B training data

Part 3: Training the model on merged Part A and Part B of the Shanghaitech dataset

This model is trained by combining both the part A and part B training data and in this model
after training it for 676 epochs we got the mean absolute error of 62. This model gives better er-
ror values and the predicted results. The model gives better results for the intermediate density images.

50
100
150
200
250

100

0 25 50 [100 125 150 175

Figure 11: Actual image and estimation after merging part A and part B training data

Figure 12: Error for merged part A and part B training data

The crowd count can be estimated from the above methods. For example, we can give an input image
and based on the density estimates given by all three models we will be able to approximate, if the
crowd is in hundreds or thousands. Along with this, we will also be able to recognize the highly
populated places in that particular image. This result can be achieved even on a freshly fed image of
random resolution with decent quality.

4 Performance Comparison of the model with the paper and other existing

techniques
Method MAE (Part A) MAE (Part B)
MCNN 123 28.87
MCNN by paper 110.2 26.4
Zhang et al 181 32
LBP+RR 303.2 59.1

Figure 13: Error for part A and part B

Ground-truth Estimation

Actual ground truth

1000 0 100 200 300 400 500 ¢

Figure 14: Paper vs our model comparison

In the above image, the first row images are from the paper and second row images are from our
model representing actual image, ground truth and estimated density image respectively.

Figure 15: Paper vs our model comparison

In the above image, the first row images are from the paper and second row images are from our
model representing actual image, ground truth and estimated density image respectively.

Experiments
Bacteria Dataset
We tested this model on a new raw image and also a new set of similar problem which is bacteria

dataset. The model is able to generate a density map showing the density region of the crowd and
bacteria.

0 20 40 60 80

Figure 16: Estimation on Bacteria Dataset
Highway Dataset
From the above bacteria and highway dataset result, we can conclude that though the density is being

generated, but to improve this further a transfer learning approach would help the model accurately
predict density.

10

Testing on the highway dataset

1000 1250 15000 1750

100

150

200

250

100 200 300 400

Figure 17: Estimation on Highway Dataset

4.0.1 References:

hitps : //www.cv — foundation.org/openaccess/content . vpro016/papers/Zhanggingle —
ImagecrowdcountingcV P Ry016,aper.pdf

hitps : | Jwww.kaggle.com/tthien/shanghaitec

hitps : //github.com/davideverona/deep — crowd — counting.rowdnet

11

